川崎市におけるホンドタヌキ Nyctereutes procyonoides viverrinus の行動圏と日周期活動

山本 祐治*

Home Range and Diel activity pattern of the Raccoon dog, Nyctereutes procyonoides viverrinus, in Kawasaki

Yuji YAMAMOTO

はじめに


また、山本（1991）は、川崎市内で交通事故などで死亡したタヌキの死体を用いてその食性と栄養状態を調べ、都市周辺地では、農地や野鳥類が主な食物源であることを報告した。

このような都市周辺地でのタヌキの生態は徐々に解明されつつあるが、タヌキが都市周辺部の環境をどのように利用しているかについては不明な部分が多い。

今回、川崎市多摩区の生田緑地周辺において、ラジオ・テレメトリーテクニックを用いて、5個体を追跡し、都市周辺部でのタヌキの行動圏とその利用状況についての調査をおこなった。調査は現在、継続中であるが、その一部を報告する。

I. 調査地の概要

生田緑地公園は、約50haの公園として保存された緑地であり、クヌギ・コナラ二木を主としており、イヌシデ、ミズキ、エゴノキ、ヤマザクラ、クリなどの落葉広葉樹が混じっている。林床部にはシラカシ、アラカシ、ヒサカシ、アオキなどの落葉広葉樹の幼木が生育し、アズマメザサ等で覆われている部分も多い。一部公園化のための植栽がほどこされている。芝生、梅林、メタセコイヤ、柳林等もみられる。北部の谷には、渓水地、湿地がみられ、水田、畑地が隣接している。また、公園の南部にはゴルフ場が隣接している。生田緑地の周辺は、開発が進んでおり、住宅地や高層建築物の多い市街地が広がっている。

II. 調査方法

1. 調査期間

調査は、1992年8月と1992年12月に実施し、個体の追跡は1992年8月から、1993年1月まで行った。

2. 個体の捕獲

タヌキの捕獲には、環境省の許可を受け、生田緑地内に木騒製のカゴ型（WOODSTREAM社、MODEL.1079）を11台設置した。居の食としてトトリのカラアゲ、魚肉ソーセージを用いた。

捕獲個体は、塩酸テトラミン系麻醉薬を筋肉注射して不動化し、外部形態の測定後、首輪型の小型電波発信装置を装着した。（写真1）視界によって個体識別が容易なように、個体毎に発信機と首輪の色を変えて、完全に麻酔から覚醒した後に捕獲場所に帰り、放逐して追跡を開始した。
3. 個体の追跡および位置の確定

個体の追跡は原則として 15 分間隔で、24 時間連続して行った。発信器はポタープル型（八重洲無線製製 FT-660 Mk II）を用い、アンテナは高指向性の同時給電型 2 素子八木アンテナ（以下、2 素子アンテナ）と車載ホイップアンテナを用い、主に車で移動しながら追跡した。

基本的な個体の追跡は、車載ホイップアンテナにより発信音を入感した後に 2 素子アンテナにより発信源の方向を求め、2 地点からの方向の交点をロケーションポイントとして 100×100m（1 ha）ごとに区分したメッシュ地図に記入し、位置を確定した。また、発信音の入力状況の変化と位置測定の結果から、活動パターンを 3 タイプに区分し、15 分毎に記録した。地図上において 15 分間に 2 メッシュ以上の位置の移動がある発信音の入力の変動が激しく、主に移動によって示されると考えられる場合を「LMP（Large moving pattern）」、地図上で位置の移動が 1 メッシュ以下で発信音の入力の変動がない、主に休息によって示されると考えられる場合を「SMP（small moving pattern）」、地図上で位置の移動が 1 メッシュ以下で発信音の入力の変動がない、主に休息によって示されると考えられる場合を「NMP（non moving pattern）」とした。

当調査地では地形条件などにより電波の反射が考えられるので、位置の確定の誤差修正のために発信源車または徒歩により接近して方角を行った。なお接近の際には追跡個体の行動に影響が出るような過度の接近は避けた。また、2 地点からだけで位置の確定が困難な場合には方角回数を増やし、3 地点以上から位置の確定を行った。各個体の追跡は原則として各月 7 日間以上行った。

III. 調査結果

1. 調査個体に関するデータ

今回の調査では、♂♂ 2 個体、♀♀ 3 個体の計 5 個体を捕獲した。
捕獲した個体の体重、外部形態計測值と、歯の創出、廃棄状態、♂♀については、鰭巻長径、♂♂については、乳頭、乳頭の状態、授乳歴の有無から発信音は供試者と推定の判断を行い、表 1 に示した。
捕獲した個体のうち♂♂ 2♂♂ 2♂♂ 3♂♂ 3 個体が 1 歳未満であると推定された。
また、♀♀ 1 個体は、92 年 8 月 30 日の捕獲時に乳汁分泌は見られなかったが授乳歴が認められ、経産であると推定された。また、仮置後、給餌家庭に当才仔を伴って出現したとの聞き取り情報が得られた。
♂♂ 2 個体は、92 年 8 月 30 日の捕獲時にヒゼンガム "Sarcopes scabiei" による頭部の発疹が観察され、93 年 1 月 15 日に死亡を確認した。死亡確認時には、土中に埋葬されており、死亡原因は不明であった。

2. 日周期活動

タヌキの日周期活動は、位置測定と発信音の入力状況の変化から得られた活動パターンを、主に移動によって示されると考えられる「LMP」と主に休息、「SMP」、休息によって示されると考えられる「NMP」の 3 タイプに区分し、分析した。

図 1 に 9 月と 12 月の全個体を計集計した 24 時間アクドグラムの各 2 時間当たりの平均値を示した。アクドグラムから日周期活動を見ると、各月共に、タヌキは、日中には、活動することの基本的である休息を主に日中の前後から、日の出後にかけての夜間に活動する夜行性を示している。

夜間の活動では、9 月に、日中の前後に活動のピークがあり、夜半の休息をはさんで、日の出前に活動のピークがある活動パターンを示している。12 月にも同様のパターンがみられるが、9 月ほど顕著ではないかった。日中の夜間の活動は、各個体共に活動が大きく、9、12 月共に、規則的なリズムは見られなかった。
時期による活動時間の変動をみると、9 月には「NMP」が 46.8%で 12 月には 53.8%であり、12 月には 24 時間当たりの活動時間が減少している。

日中の活動では、9 月には 8 時から 16 時までの日中の時間帯にも「SMP」の活動パターンがみられ、日中の活動が多くみられる。しかし、これらの時間帯には「LMP」は少なく、移動せず、「ねぐら」やその周辺で活動していることがわかる。夜間でも、「NMP」の割合が低く活動時間が長くなっている。

12 月には、8 時から 16 時までの時間帯では「SMP」、「LMP」は少なく日中はほとんど休息していることがわかる。夜間の時間帯でも「NMP」の割合が高い活動時間が短くなっている。
こうした活動パターンの季節変動は、タヌキの繁殖年周期や食物資源の分布や量に対応していると考えられる。

個体による変動では、♂♂ 2♂♂ 2♂♂ 3♂♂ 3 個体とも「NMP」が多く、発疹症の影響を考えられた。

3. 行動圈とその利用

行動圈は、各個体のロケーションポイントの最外輪を結んで示した。
各個体の行動圈の面積の増加が、♀02、♂03 を除き、追踪開始後14日から30日でほぼ飽和に達し、その後追跡最終日までの面積増加率は5％以下であった。このことから、追跡日数の短い♀02、♂03 を除き、この時期の各個体の行動圈を十分把握していると考えられる。

5個体の行動圈を図2に示した。また、各個体の行動圈の面積、追跡日数は、表1に示されている。

上述の行動圈の平均面積は、26.6ha、追跡日数の短い♀02、♂03 を除いた3個体の平均面積は30.7haであった。

この面積は、九州およびの高遠での行動圈の平均面積26.2ha（伊東1984）に近いものであった。ラジオ・テレメトリー法を用いた本種の行動圈の平均面積は、九州松浦島での10.3ha（伊東1984）から長野県入笠山の高遠山までの662.9ha（山本・谷地：投稿準備中）まで極めて広い幅を示している。

行動圈の環境による変動は、同じ地域の食肉類であるアカギツネ Vulpes vulpes のアライグマ Procyon lotor 等も知られており（D.W.マクドナルド1986），本種が環境や食物資源の量、分布によって行動圈の面積を大きく変化させることを示している。

♂02 は、行動圈の面積が３個体の中でも最も小さく調査期間中に死亡したことから、結核症が行動に影響したと考えられる。

日中、地図上の同じメッシュに2時間30分（10ポイント）以上滞在し、「NMP」の活動パターンを示した場合、その地点を休息場所や巣穴として利用している「ねぐら」とみなした。

これらの「ねぐら」は、1個体で2〜4箇所持っていた。長野県入笠山の高遠山までの距離は、同様に3〜14箇所の「ねぐら」を利用しており（山本・谷地：投稿準備中）、都市周辺部のタヌキの行動圈内には、「ねぐら」として適した場所が少ない可能性がある。

これらの「ねぐら」は、いずれも生田緑地内か、これに連なる樹林内にあった。人間の接近による放棄を避けるため、「ねぐら」に接近しなかったことから、その推定、構造が不明のものが多いが、全個体に計12箇所のうち3箇所は、生田緑地内の日本民家屋に展示されている無人の民家の床下を利用していた。残りの10箇所は、林床がアツマネザナ等で密に覆われていて樹林地の斜面が利用されていた。

各個体の行動圏はいずれも重複しているが、8月に捕獲及び追跡した♀01、♂02、♂01 の3個体の行動圏は、重複が少なく、「ねぐら」の共有、同時利用は見られなかった。

♀01 と♂02 は「ねぐら」を共有し、２頭で同じ「ねぐら」を同時利用していた。夜間にも、捕獲された個体が行動圈を重複したり、他の個体と同時に行動し、夜間の活動が確認されなかった。

♂02 の「ねぐら」は、同種の「ねぐら」を共有し、同様に夜間の活動が確認されなかった。

♂02 の「ねぐら」は、同種の「ねぐら」を共有し、同様に夜間の活動が確認されなかった。

以上の結果、夜間の行動パターンは、捕獲された個体が行動圈を重複したり、他の個体と同時に行動し、夜間の活動が確認されなかった。
た。絶対している住宅では、発信機接着個体以外にも複数の個体が生活しているとの聞き取り情報が得られた。

IV. まとめ

今回の調査から、生田緑地周辺のタスキは、比較的狭い行動域を持っており、他の個体との行動域を重複させている。中には「ねぐら」や採食場所についても、他の個体と重複して利用していることが示された。また、行動域が生田緑地内部のみに限定されている個体はなく、すべての個体が周辺の住宅地を夜間に利用していた。しかし、夜間に高頻度で利用されていた絶対している住宅やゴミ集積場のある住宅地内では、日中の「ねぐら」がまったく見られなかった。全ての個体において「ねぐら」は、生田緑地内部やその周辺の樹林内にあった。

これは、住宅地内の絶対している住宅、ゴミ集積場、都市周辺部のタスキの採食場所として極めて重要である。住宅地を採食場所として利用しており、日中の休息場所、繁殖の場所としての巣穴である「ねぐら」は、樹林地やヤササ草地等の「緑地」に強く依存していることを示している。

したがって、住宅地や高層建物が多い街並みが広がる一部に緑地が残っている都市周辺部では、タスキの行動域は、休息場所、繁殖場所としての巣穴である「ねぐら」を確保し自然の食物を採食する場所である「緑地」と、数回に数回の採食場所である「住宅地」によって構成されており、タスキは、この2つの場所を繰り返す「けども」を利用し往來していると考えられる。

このようなタスキは、都市周辺部の環境を休憩場所、採食場所に使用し、有効に活用している。池田（1987）の予測したように、タスキが都市周辺部の環境を新たな生息域として確立させたと考えられる。

しかし、今後の都市周辺部でのタスキの生息には、様々な問題点が認められる。

まず、タスキにとって休息場所、繁殖場所としての巣穴である「ねぐら」を確保し、自然の食物を採食する場所として極めて重要な環境である「緑地」が、現在も開発が進んでいる。住宅地が造成されていることがあげられる。この開発により減少しつつある緑地を保全すること、が都市周辺部のタスキの生息環境を維持するためには、もっとも重要と考えられる。

次に、都市周辺部での本種の交通事故が急増していることがあげられる。死体の多くが、緑地に近い住宅地内の道路に比べて交通量の多い地点にわざわざ悪い道路で集められており（木下・山本 1993）、交通事故死が、主に採食場所と「ねぐら」、採食場所間の移動の際に起きたことを示唆している。これは、交通事故死の対策が不足であることが確認されない（山本：推奨案中）からも支持される。

交通事故の発生が観察された道路は、道路を横断する際の本種の行動様式が繰り返し、道路同士の間隔が狭い道路と考えられる（木下・山本 1993）が、交通事故の多い道路は地下道式のタスキの通路を通じて注意を喚起することによりタスキの交通事故の軽減が考えられる。

また、都市周辺部では、人間やイヌ、ネコ等のコンパニオン・アニマルとタスキとの接触が増加しており、共通の疾病や各種の被害の問題がある。現在はタスキに有害な対応をしている都市周辺部の住民が、タスキの生息そのものを問題視する可能性がある。前述したように交通個体のうち一部には、イヌ、ネコ等と共通の疾病であるヒツジバムによる胎児症が見られ、調査期間中に死亡した。川崎市内で収集した交通事故体も、1991年以降、胎児症の個体が確認されている。（木下・山本 1993）、また、都市周辺部で胎児症によると考えられる本種の大量死（谷地森・山本 1992）やジスタノバ感染個体（飯村 1986）が報告されている。

交通事故死体の収集地点の変化（山本 1991、木下・山本 1993）や絶対家庭での聞き取り情報からみると、タスキはさらに緑地の少ない都市部に進出しつつあるようにみえる。現在は、都市周辺部からの分散個体が、一時的に都市部の少ない都市部に生息しており、都市部での拡散的な繁殖は極めて少ないと考えられる。しかし、前述したようにタスキは生田緑地内に展示されている無人の家畜の床下など「ねぐら」として利用しており、マシンボルや排水管を「ねぐら」として利用している例も報告されている。（飯村 1986）

都市部に進出しと個体群を維持するすれば、住宅地内の家畜の床下や排水管等を急激に拡大しなければならないと「ねぐら」としてののみではなく、繁殖場所としても利用することが一般化した場合であろうが、これにより、野生動物であるタスキが都市部に生息することに対する住民の理解が促進される必要があると考える。

今後は、これらの問題点に注意しつつ、交通個体を増やし、長年続く笠山で継続している山地の野生タスキの生態と比較することによって、都市周辺部のタスキの役割がより明確にし、人間とタスキの共存について検討していきたい。
V. 謝辞

今回の調査にあたり、川崎市環境保全部北区公園事務所には、公園内への設置と調査車両の乗り入れに関し、ご協力をいただきました。また、鳥口達也氏、寺尾生氏、森田美由美氏をはじめとする「都市のタヌキ研究会」のメンバーには、タヌキの追跡にあたってご協力いただきました。サレピオ学園の小川幸彦氏には、絵の講座でのタヌキの情報について、ご指導いただきました。鈴平岡環境科学研究所には、捕獲許可申請や器材に関じてのご協力いただきました。

川崎市青少年科学館の木下秀美氏には、常にお世話になりました。厚くお礼申し上げます。

引用文献

1) 古内昭五郎・野口光昭・沼田美幸（1988）神奈川県における中型哺乳類（タヌキ・キツネ）の生息状況について(2)。神奈川県立自然保護センター調査研究報告5：p.37。神奈川県立自然保護センター

2) 古内昭五郎・沼田美幸・長山俊（1989）自然保護センターにおけるタヌキの敷設状況について。神奈川県立自然保護センター調査研究報告5：p.203。神奈川県立自然保護センター

3) 神村武（1986）神奈川県におけるホンドタヌキの動態に関する調査。神奈川県立自然保護センター調査研究報告3：p.1。神奈川県立自然保護センター


5) 池田明（1987）タヌキが街にやってきた。自然保全部705、p.8。国日本自然保護協会

6) 金井郁夫（1991）東京の中型哺乳類（タヌキ、キツネ）の生息状況。東京都自然保護センター

7) 木下秀美・山本祐治（1993）川崎市域のホンドタヌキ調査（II）。川崎市青少年科学館紀要4：p.45。川崎市教育委員会

8) 鶴岡一・中島志雄・池田明（1988）都市のタヌキは増えているのか？日本哺乳類学会第2回大会予稿集：p.11。日本哺乳類学会

9) 福渡光夫・坂本亜光・伊藤正晴（1984）神奈川県における中型哺乳類（タヌキ、キツネ、ハクシリン）の生息状況について、神奈川県立自然保護センター調査研究報告1：p.21。神奈川県立自然保護センター

10) 山口佳秀（1987）哺乳類ノート2—側溝を越えていく道として利用するタヌキについて。神奈川県自然誌資料8：p.71。神奈川県立博物館

11) 山口佳秀（1988）哺乳類ノート3—タヌキのけもの道について。神奈川県自然誌資料9：p.59。神奈川県立博物館

12) 山本祐治（1991）川崎市域で収集されたホンドタヌキの食性・分布について。川崎市自然環境調査報告10：p.185。川崎市教育委員会

13) 谷地和秀二・山本祐治（1992）八王子市周辺のタヌキの繁殖年周期と脱毛個体一覧表及びアンケート調査結果。自然環境科学研究Vol.5、p.33。鈴平岡環境科学研究所

14) D.W.マクドナルド（1986）動物大百科1食肉類。平凡社

表1 タヌキ捕獲個体の外部計測値とラジオ・テレマートリー法で得られた行動圈の面積

<table>
<thead>
<tr>
<th>個体No.</th>
<th>性別</th>
<th>捕獲日</th>
<th>体重</th>
<th>全長</th>
<th>頭側長</th>
<th>尾長</th>
<th>後肢長</th>
<th>耳介長</th>
<th>精果長</th>
<th>精果長sv.</th>
<th>乳頭線目</th>
<th>畜耗</th>
<th>行動圈面積</th>
<th>銀珠数</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>Φ</td>
<td>92/08/30</td>
<td>4.5</td>
<td>72.0</td>
<td>56.5</td>
<td>15.5</td>
<td>11.2</td>
<td>4.8</td>
<td>—</td>
<td>2</td>
<td>32.5</td>
<td>37</td>
<td>給乳発情</td>
<td></td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>Φ</td>
<td>92/08/30</td>
<td>2.6</td>
<td>61.0</td>
<td>46.5</td>
<td>14.5</td>
<td>11.0</td>
<td>4.5</td>
<td>0.7</td>
<td>—</td>
<td>1</td>
<td>43.5</td>
<td>37</td>
<td>給乳発情</td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>Φ</td>
<td>92/08/30</td>
<td>4.2</td>
<td>72.0</td>
<td>55.0</td>
<td>17.0</td>
<td>11.0</td>
<td>5.5</td>
<td>2.1</td>
<td>3</td>
<td>16.0</td>
<td>35</td>
<td>給乳発情</td>
<td></td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>Φ</td>
<td>92/12/06</td>
<td>5.6</td>
<td>77.0</td>
<td>58.5</td>
<td>18.5</td>
<td>11.5</td>
<td>4.4</td>
<td>—</td>
<td>1</td>
<td>25.5</td>
<td>12</td>
<td>給乳発情</td>
<td></td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>Φ</td>
<td>92/12/12</td>
<td>6.5</td>
<td>74.0</td>
<td>60.5</td>
<td>13.5</td>
<td>10.5</td>
<td>5.0</td>
<td>1.6</td>
<td>1</td>
<td>14.5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 1 畜耗の推定 1：ほとんど畜耗せず 2：やや畜耗 3：激しく畜耗
* 2 1993年1月18日現在 3 1993年1月15日死亡確認
図1 24時間アクトグラム（各2時間当りの平均値 全個体）

図2 生田緑地周辺のタヌキ行動圏の空間配置